Loop Antennas

Loop antennas may be constructed in many forms including horizontal full wave loops in square, rectangle or triangle (delta) shapes.  They can also be in the vertical plane and are most often in the same shapes with the delta being very popular as it has both vertical and horizontal polarization.  The impedance at the loop resonant frequency is approximately 100 ohms but will very slightly on harmonics.  Loops are “quiet” antennas compared to verticals and dipoles and are omni-directional.  The also exhibit gain on harmonic bands.  Once you try a loop antenna you will know why they are so popular with old timers but still a secret to newcomers.  Shown below are some typical designs:

 

Full Wave Horizontal Loop Antenna (a.k.a Skyloop)

Palomar Horizontal Loop Config 2022 300x202 - Loop Antennas

This antenna is horizontally polarized and should be mounted as high as possible but works well at low heights of 10-30 feet.  They are quieter than a dipole or a vertical, have a broader bandwidth and will usually out perform a dipole antenna.To determine the approximate circumference in feet of a full wave loop antenna use the formula:

1005/Freq in Mhz = length in feet.

The feed point impedance of a full wave loop antenna is theoretically in the vicinity of 120 ohms and requires a 2:1 impedance transformer (for single band loops or a 4:1 balun to match on multiple bands) with 50 ohm line.  You will also need a feed line choke or better yet, just get the Hybrid 4:1+1:1 in a single box.

Vertical Delta Loops

Palomar Vertical Loop Config 300x198 - Loop Antennas

Vertical delta loops can be oriented several way but the most popular is to have the “pointy” end at the top (usually a single support) and the lower horizontal ends just out of reach of humans and animals.  Best feed point is 1/4 wavelength (246/f(mhz)) from the top point down one side.  Vertical delta loops use the same 2:1 baluns as the horizontal loops or 4:1 for multi-band operation.

 

Solar Micro-inverter/PV Module Noise Filters (2)-ID=1.4" Ring, 1/2" Snap On

SKU RFI-PV-MI
$24.95
Bulk pricing available for quantities of 10 units or more
1
Buy more, save more
QuantityPrice per itemDiscount
10 items$21.9912% off
50 items$19.9520% off
100 items$18.9524% off
Save this product for later
Customer reviews
No reviews yet. Only signed-in customers who bought this product can leave reviews. To leave a review, sign in
Share this product with your friends
Solar Micro-inverter/PV Module Noise Filters (2)-ID=1.4" Ring, 1/2" Snap On
Product Details
MPN: RFI-PV-MI
Type: New
Country/Region of Manufacture: United Stats
Filter Power Rating (PEP watts): not applicable
RFI Suppression Range (MHz): .1-10
Enclosure Size (inches): none

The RFI kit is designed to suppress RFI caused by Solar micro-inverters, power optimizer, and solar arrays by electrically isolating the “antenna” wires used to connect the various devices.The cabling between the PV array, the micro-inverters or power optimizers and their connection to the electrical bus combining their individual outputs can be considered “antennas” for the pulse switching circuits of the individual devices thereby causing radiation at very low fundamental frequencies with harmonics that can cause undesirable radio interference in the 1-30 MHz (and sometimes higher) frequency range.This interference may be objectionable to the owner of the solar installation as well as neighbors who may also experience the interference to their electronic devices.

THE RFI KIT FILTERS ONLY SUPPRESS COMMON MODE CURRENT (SIGNALS) THAT ARE COMMON TO ALL WIRES IN THE CABLE, AND DOES NOT EFFECT INDIVIDUAL DIFFERENTIAL SIGNALS ON EACH WIRE. THE FILTERS HAVE NO EFFECT ON THE NORMAL SIGNALS CARRIED WITHIN THE CABLE.

Micro-inverter RFI

Ferrite cores (snap on) are snapped over the two (+/-) cables from the solar array module and the two wires hooked to the “string” connecting the micro-inverters together. Suppressing RFI on all wires in and out of the micro-inverters helps to reduce any broadband RFI “noise” generated in the SOURCE switching circuits (typically at 50-200KHz and harmonics thereof). Two ferrite cores are required for each micro-inverter/PV array – one ring for the PV DC cables and a snap on for the micro-inverter cable to the string bus – size to fit the trunk cable with 1 or 2 turns.

Application Note for Enphase M190/M215/M240/M250 series Micro-inverters (and similar other brands). For each PV array/micro-inverter use a RFI-PV-MI filter kit with a ring (ID=1.4″/36MM) ferrite for installation on PV module DC cables to micro-inverter and a snap on (ID=.4″/10mm) filter for the data/trunk cable output of the micro-inverter. At the connection of each junction box and the Engage cable install a RFI-PV-JB filter (ID=1″/26MM) with multiple turns through the center.