Loop Antennas

Loop antennas may be constructed in many forms including horizontal full wave loops in square, rectangle or triangle (delta) shapes.  They can also be in the vertical plane and are most often in the same shapes with the delta being very popular as it has both vertical and horizontal polarization.  The impedance at the loop resonant frequency is approximately 100 ohms but will very slightly on harmonics.  Loops are “quiet” antennas compared to verticals and dipoles and are omni-directional.  The also exhibit gain on harmonic bands.  Once you try a loop antenna you will know why they are so popular with old timers but still a secret to newcomers.  Shown below are some typical designs:

 

Full Wave Horizontal Loop Antenna (a.k.a Skyloop)

Palomar Horizontal Loop Config 2022 300x202 - Loop Antennas

This antenna is horizontally polarized and should be mounted as high as possible but works well at low heights of 10-30 feet.  They are quieter than a dipole or a vertical, have a broader bandwidth and will usually out perform a dipole antenna.To determine the approximate circumference in feet of a full wave loop antenna use the formula:

1005/Freq in Mhz = length in feet.

The feed point impedance of a full wave loop antenna is theoretically in the vicinity of 120 ohms and requires a 2:1 impedance transformer (for single band loops or a 4:1 balun to match on multiple bands) with 50 ohm line.  You will also need a feed line choke or better yet, just get the Hybrid 4:1+1:1 in a single box.

Vertical Delta Loops

Palomar Vertical Loop Config 300x198 - Loop Antennas

Vertical delta loops can be oriented several way but the most popular is to have the “pointy” end at the top (usually a single support) and the lower horizontal ends just out of reach of humans and animals.  Best feed point is 1/4 wavelength (246/f(mhz)) from the top point down one side.  Vertical delta loops use the same 2:1 baluns as the horizontal loops or 4:1 for multi-band operation.

 

Common mode current induced by radiated sources (plasma TV, routers, computers, transmitters, etc) can be picked up by the outside of the coax braid from the antenna feed point back to the receiver. This portion of the coax braid acts like a receiving antenna, picking up common mode noise signals that override weak signals making them difficult or impossible to hear!

The solution? A common mode noise filter with high choking impedance at the receiver end of the coax.

Do you have common mode noise on your coax? Here is a simple test (pdf)

1. Remove the coax connector and measure the noise level.
2. Now insert the coax connector CENTER CONDUCTOR ONLY into the SO-239 antenna input and measure
the noise level (it should be higher and include possible signals)
3. Now connect the OUTER SHELL of the coax connector to the antenna input and measure the noise
level. If it is higher you have common mode noise and the common mode noise filter will help suppress this noise which
is carried on the outside of the coax braid (acting as a second receive antenna).

Common mode noise suppression with the Palomar CMNF series of filters is typically 25-36 dB which is equivalent to 4-6 “S” units on radios with 6 dB/”S” unit or may be more on radios with 3dB/”S” unit.

Note for antenna switch users, perform the above test on each antenna coax lead separately to determine if that particular antenna braid is contributing noise to the receiver – use a coax noise filter on the antennas that have common mode noise.

Coax Noise Filter Manual

Refine by
 

Filters

Filters